FLUID VELOCITY AND PRESSURE DISTRIBUTIONS
ALONG A PIPE WITH HOLES

R. S. Kuznetskii UDC 532.542

Fluid velocity and pressure distributions, averaged over the cross section, are found for a
finite straight pipe containing holes or a slit of constant area per unit length,

1. We discuss, in the hydraulic approximation, the stationary flow of a fluid in a straight pipe with
small closely spaced holes distributed quasicontinuously in the longitudinal direction, or a narrow slit or
slits having a constant total area per unit length of pipe. If the pipe is closed at one end and is either hori-
zontal or surrounded by fluid of the same density p, and if the quadratic law of resistance holds, the equa-
tions for the longitudinal motion of the fluid have the form [1, 2}
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and if the pressure is specified at the pipe inlet the boundary conditions are
p0) = py, v(L)=0. (2)
A similar problem involving a single hole or several holes and branch pipes has been discussed [1~5]
and the phenomenon of pressure reduction analyzed.
It is natural to write Egs. (1) and (2) in dimensionless form:
@+ =—u?, u'=—0Vg; 3
) =1, u(l)=0. B )

Thus the process under consideration is characterized by two controlling dimensionless quantities o and ¢,
and the conditions for its simulation are o = idem and y = idem [6].

it follows from (3} that u is always a monotonically decreasing function of x. We note that in the limit-
ing case of a very long pipe when the second boundary condition is approximately satisfied, Eqgs. (3) and (4)
have a solution which is nearly exponential:

u:uoexp(—wuixj, cp:exp(——f—x), (5)
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where u, is determined from
(20 Wpud — 2mu 4 1 = 0. (6)

By changing the independent variables

u= ¢ =2 (7

A
o’
Eq. (3) is transformed into a simpler system (8) whose analytic solution is found and analyzed below.

The solutions of (3) and (4) were calculated on a Minsk-22 computer for a series of values of ¢ and a
constant value of o/¢ =0.256 (Fig. 1, a and b), i.e. for a variable pipe length and linear characteristics
independent of it. '
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Fig. 1. Dimensionless velocity (a) and dimen-
sionless gage pressure (b) as functions of the di-
! ; ! mensionless coordinate x measured along the
R\ pipe. 1) 0 =0.25; 2) 0.5; 3) 0.75; 4) 3; 5) 3.5;
¢ 6) 4.

A\
e ]

iﬁ\ '\

[ [14] (4] ors X 7 025 a5 o7y X

/
# 5 y
’2/
7

The solutions behave differently for 0 <1 and ¢ >1. For ¢ < 1 uisnearlyalinear function of x and
ty(0) increases rapidly. The pressure recovery predominates everywhere over the resistance, and the
functions ¢(x) and ¢(c) increase monotonically. For ¢ > 1 o) increases slowly, approaching the limit
determined by (6), and the main part of the curve for u(x) falls with increasing ¢, The function ¢(x) has a
minimum, with the amount of the increase and ¢;(0) decreasing as v increases. Both u(x) and ¢(x) approach
exponentials (5). ,

The functions yy{o) and ¢,(0) are shown in Fig. 2.

The theoretical results were tested experimentally. Two cylindrical pipes of length L = 2,25 m with
inside diameters of 40 and 100 mm were investigated. Holes 4 mm in diameter were spaced along the
generators with a distance of 25 mm between centers. The working medium was natural gas with an inlet
gage pressure p, = 175 and 100 N/m?, The values of p were measured with a TNZh-25 gage, The experi-
mental conditions did not correspond exactly to the idealized case assumed in [1]. Nevertheless when the
device permitted a measurement of the pressure drop the values of ¢ did not differ from the theoretical
predictions by more than 2.6%,

2. We consider the system of differential equations

gy +2 = o, Y = pz(af = 0) (8)
or the equivalent equations: fory
¥y + By —oay) =0 &)
and for z
[v(22) +22' )P —z( — 202 (292 4+ 2) == 0. (10)

It should be noted, however, that the solutions of Egs. (9) and (10) contain the solutions of (8) for
both signs of 3.

Making the substitutions
=y +2 (620, n=" (11)

we transform (8) into

g W s, n,:*a[ng_s(nz'+1)]' (12)

The second of Egs. (12) can be integrated directly by separation of variables to give
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vy T4 ; which explicitly determines the function which is the inverse of n =n(x).
/a{P \ ’ Here 1% =ns{e)(sgnns = sgne, n«l > max{lel, le!!/3]) is the only real
T AS u root of n® —e(n? + 1) =0. 7(x) is an odd function of 8.
/ )V From (12) ¢ is found as the integral
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The system of transcendental equations (13) and (15) is the general solution of (8), and (13) and the
second or first of Eqs. (15) are respectively the general solution of Egs, (9) and (10), The solutions are
written in parametric form by means of the parameter n. They are not contained in handbook [7]. Equa-
tions of the form (8)-(10) must be integrated numerically in specific cases.

3. We note particular solutions of (8)—~(10) of the exponential type

i-_-,—.z:—.Cexp ('ix), (16)
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vanish at infinity x = + < respectively for o s 0.

We assume, in accordance with our problems, that o < 0 and 5 < 0, the argument is positive and has
bounded variation (0 = x =< 1), and the boundary conditions are of the type
z(0)=1, y(1) =0 for (8); 4 (0) =P, y(1)=0 for (9); 17
2(00=1, (1) =0 for (10).

The corresponding particular solution has the form
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where 71, =71(0) is the root of the equation
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In accordance with (18)-(20) y(x) is a monotonically decreasing function. z(x) always has a maximum
at x = 1 and increases monotonically for ¢ = ¢y, where the function £y = £4(lcl) is given by
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€ > gy z(x) has a minimum, The magnitude of this minimum and the difference between the corresponding
value of the argument
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and unity decrease with increasing lal for fixed ¢,
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We note that the particular solution (16) with C =1 also satisfies the boundary conditions (17) at x = 0;
the boundary conditions at x = 1 are only approximately satisfied for la| > 1, but more accurately the larger
fod. In this sense the simple analytic solution (16) is limiting with respect to (18} and (19),
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NOTATION

is the density of the fluid in the pipe;

is the Coriolis coefficient;

are respectively the total and reduced resistance coefficients of the pipe;

is the ratio of the total area of the holes or slits in the wall of the pipe to its inside
cross-sectional area;

is the coordinate measured along the pipe;

is the longitudinal velocity of the fluid averaged over the cross section of the pipe;

is the gage pressure of the fluid averaged over the cross section of the pipe, p, = p(0);

are dimensionless variables corresponding to !, v,and p; uy = w(0), ¢ = @(1);
are unknown functions of x;

are constants;
are integration constants,
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